Performance of *Derris microphylla* as a High-Shade Tree

S.R.W. Pathiranage¹, M.S.G. Liyanage¹, E.M.G.P.B. Ekanayake¹,

L. Hemakumara¹, O Gunawardhana¹,

R.D.P.D. Senanayake² & M.M.N. Damayanthi³

¹Agronomy Division, ²Entomology and Nematology Division, ³Plant Physiology Division

Tea Research Institute of Sri Lanka

Introduction

- Tea is a shade-loving plant that thrives in partial shade
- Albizia spp. is recommended as high-shade
 - low- and mid-elevation
- Farmers have issues with Albizia:
 - Excessive trunk girth and height make it difficult to manage
 - Requires frequent replanting, typically every 12 years
- Growers often leave Albizia unattended
 - Sell them for timber when they become unmanageable
- Damage to tea bushes both physically by falling trees and physiologically with the sudden exposure to direct sunlight
 - Need for an alternative high-shade tree / smaller and more manageable than Albizia

Objective

To test the growth performances of potential high-shade tree species and to study their effect on the growth and yield of tea

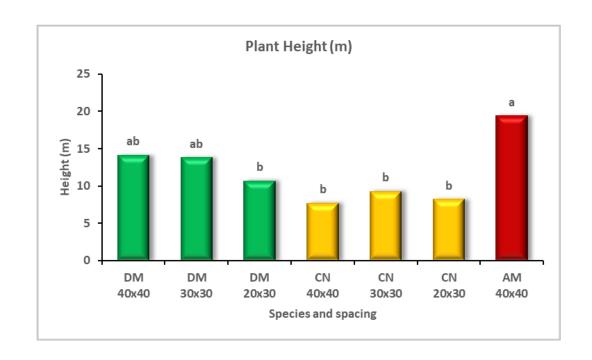
Methodology

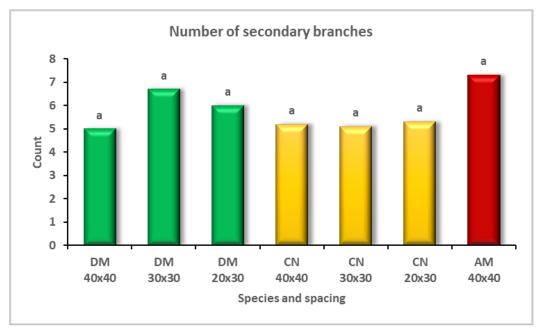
Location

Houpe estate, Kahawatta (6.56 N, 80.52 E / 30 m AMSL / WL2a / > 2400 mm yr⁻¹)

Treatments

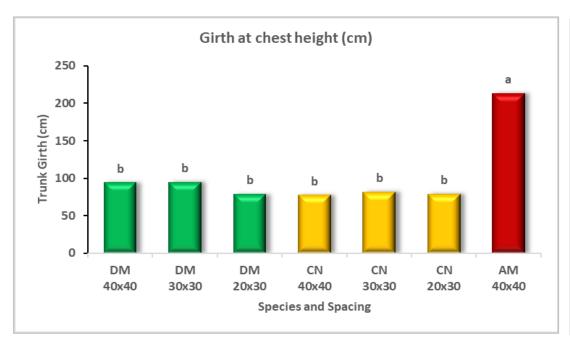
```
Derris microphylla
                                (DM-40x40)
                     40x40 ft
Derris microphylla
                                (DM-30x30)
                     30x30 ft
Derris microphylla
                                (DM-20x30)
                     20x30 ft
Cassia nodosa
                     40x40 ft
                                (CN-40x40)
                                (CN-30x30)
Cassia nodosa
                     30x30 ft
                                (CN-20x30)
Cassia nodosa
                     20x30 ft
                                (AM-40x40) (Control)
Albizia moluccana
                     40x40 ft
RCBD with 3 Replicates
```

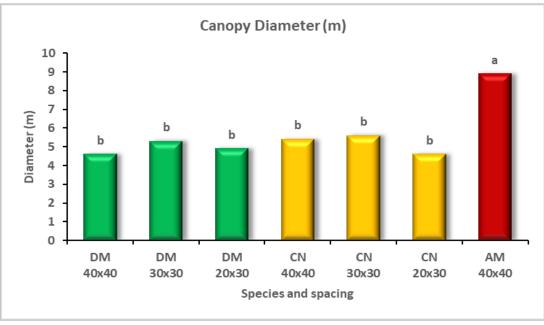



Result and Discussion

Growth of shade trees

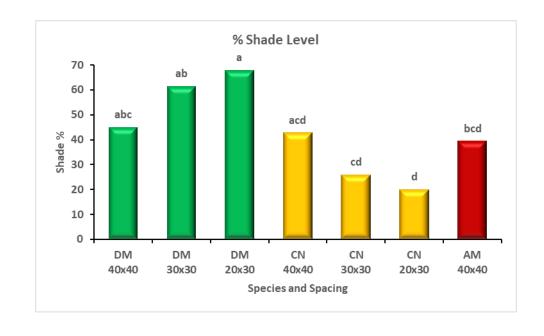
Plant height and branch development




- Derris microphylla showed comparable to low plant height to Albizia moluccana
 - Shorter plants make shade management easier
 - C. nodosa was shorter than both D. microphylla and A. moluccana
- No significant difference in the count of secondary branches
- C. nodosa produced extremely thick dense canopy
 - Needed higher number of lopping

 D. microphylla found to be easier in shade management than A. moluccana

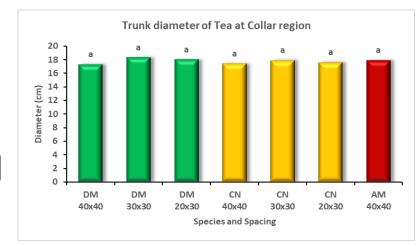
Trunk girth and canopy development



- D. microphylla and C. nodosa recorded smaller trunk girths which was easier for the management of shade compared to A. moluccana
- Both new shade tree species showed narrower canopy diameters (spread) than *A. moluccana*
- Tested new shade trees are smaller plants easier for management of shade

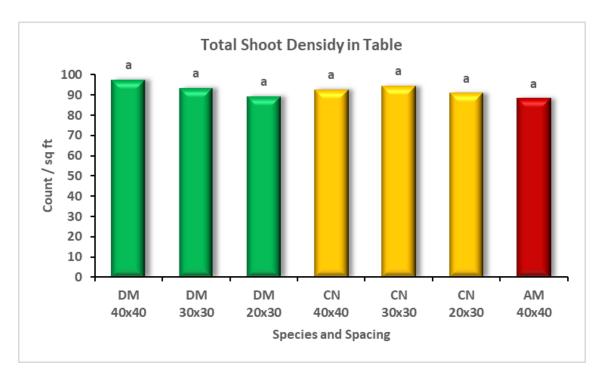
Level of shade provided under each shade regime

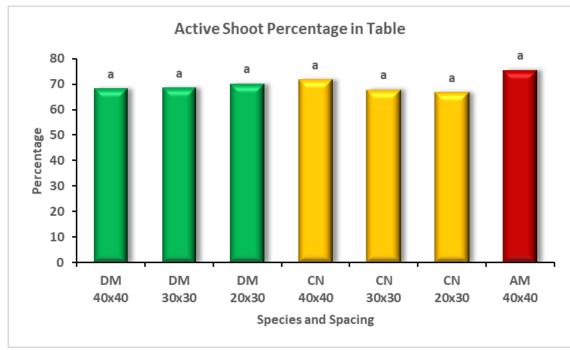
- Shade condition under *A. moluccana* showed comparable values to those under *D. microphylla* (40x40) and *C. nodosa* (40x40)
 - C. nodosa showed many casualties
 - Canopy height was also lower than others
- *D. microphylla* (40x40 ft) provided adequate shade level to tea compared to *A. moluccana*

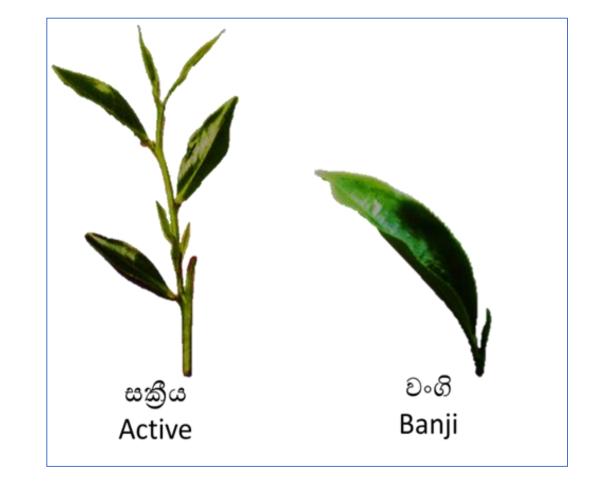


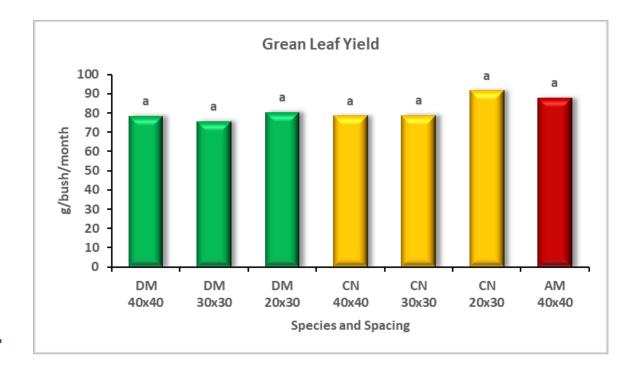

Growth and yield of tea bushes

Girth of main stem and spread of plucking table

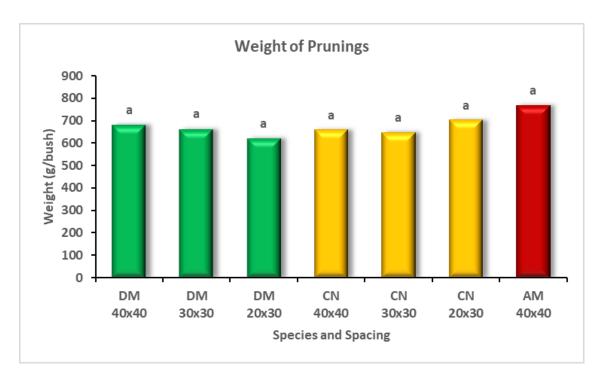

- Trunk girth of tea was comparable under all shade systems
- Spread of the table was not significantly varied
 - All shade systems equally supported the frame development in tea
 - Vascular system development → nutrient and water supply
- New shade TRTs have supported the growth of tea bushes similar to that of A. moluccana

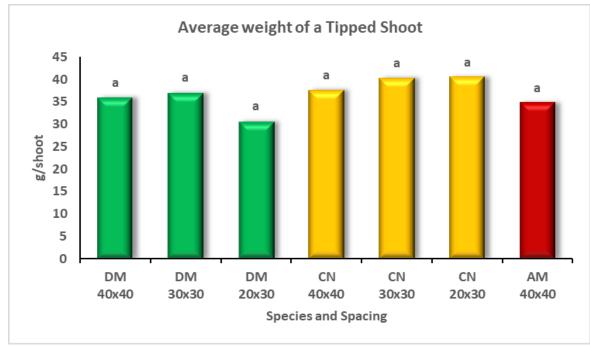



Shoot density and *Active growth* - plucking table


- Shoot counts using a 1 ft² quadrat at the center of the plucking table
- Total shoot density did not vary with the shade systems tested
- Active shoot growth was not affected by different shades provided
 - Banji shoots → less weight / takes longer to grow actively
- Hence, tested new shade trees have supported the active growth of tea shoots comparable to tea under A. moluccana

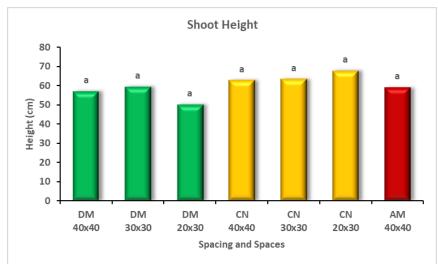
Green Leaf Yield

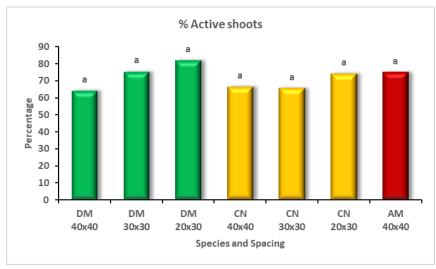

- No significant variation could be observed in tea shoot yield in different shade treatments
- Tea shoot yield of all shade treatments were comparable to that of A. moluccana (control)
- Tested new shade systems have supported growth and yield of tea similar to tea grown under A. moluccana



Recovery after pruning

Pruning and tipping weights





- Weight of pruned branches showed no significant variation among the shade treatments
- Average weights of a tipped branch became comparable across all TRTs
- This indicates that shade provided by new tree species have comparable effects on the recovery after pruning of tea similar to that of A. moluccana

Tipped shoot height and percentage active shoot growth

- Tipped shoot height was not affected by the shade TRTs
 - At 8-12 leaves stage, leaving 4-6 leaves
- 60-70% of tipped shoots were actively growing irrespective of the shade TRT
 - Active shoots grow fast and adds more weight
- New shade treatments have comparable effect with A. moluccana in the active shoot development after pruning

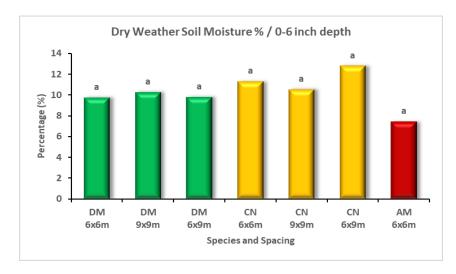
243rd Experiment and Extension Forum

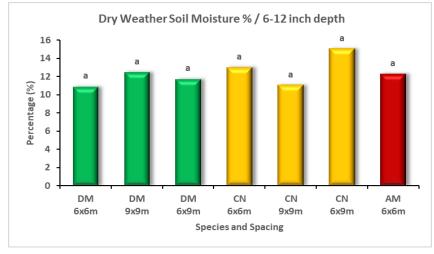
Soil related parameters

Soil properties measured in 0-6 inch depth

TRT	рН	C (%)	N (%)	K (ppm)	P (ppm)
DM-40x40	5.07 ^a	1.37 ^a	0.208 ^a	134.5 ^a	18.63 ^a
DM-30x30	5.05 ^a	1.41 ^a	0.210 ^a	139.1 ^a	20.27 ^a
DM-20x30	4.84 ^a	1.82 ^a	0.208 ^a	120.6 ^a	21.40 ^a
CN-40x40	5.02 ^a	1.39 ^a	0.221 ^a	143.2 ^a	22.53 ^a
CN-30x30	4.94 ^a	1.55 ^a	0.191 ^a	134.5 ^a	21.17 ^a
CN-20x30	4.89 ^a	1.59 ^a	0.219 ^a	144.6 ^a	22.70 ^a
AM-40x40	4.94 ^a	1.66 ^a	0.201 ^a	135.8 ^a	22.40 ^a
CV	3.05	13.39	4.91	10.95	16.4

Soil properties measured in 6-12 inch depth


TRT	рН	C (%)	N (%)	K (ppm)	P (ppm)
DM-40x40	4.88 ^a	1.34 ^a	0.200 ^a	141.0 ^a	21.13 ^a
DM-30x30	4.92 ^a	1.44 ^a	0.210 ^a	125.3 ^a	20.60 ^a
DM-20x30	4.68 ^a	1.36 ^a	0.200 ^a	131.2 ^a	22.33 ^a
CN-40x40	4.94 ^a	1.38 ^a	0.198ª	137.5 ^a	21.07 ^a
CN-30x30	4.71 ^a	1.43 ^a	0.210 ^a	134.4 ^a	21.02 ^a
CN-20x30	4.86 ^a	1.38 ^a	0.198ª	143.8 ^a	18.33 ^a
AM-40x40	4.95 ^a	1.47 ^a	0.205ª	130.7 ^a	21.07 ^a
CV	4.87	9.47	7.04	11.37	11.20



- All soil parameters in both the soil depths recorded no variation among treatments
- Further, N, P, K, C percentage and pH were fall within the normal range of low-country tea soils (Anon, 2000; Liyanage et al., 2014)
- Therefore, effect of new shade systems on soil related parameters were comparable to that of *A. moluccana*

Dry weather soil moisture contents

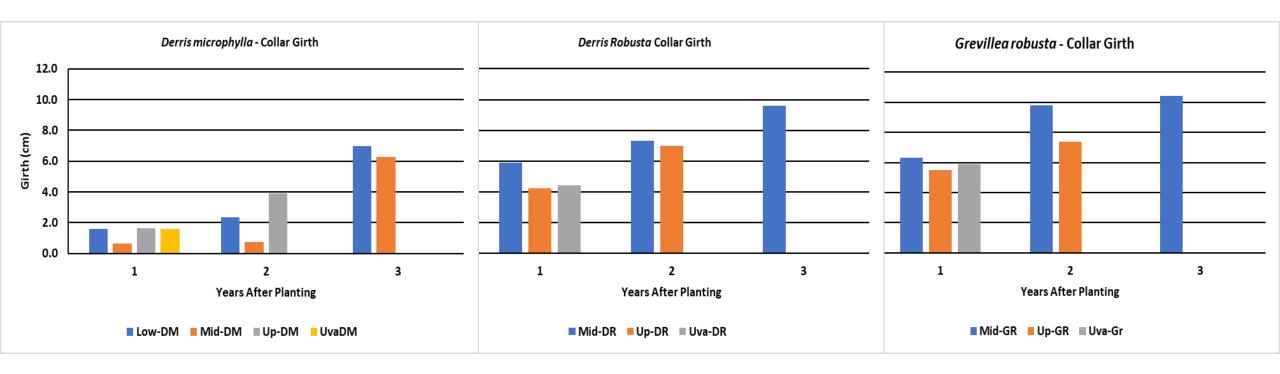
- Soil moisture records under *D. microphylla* and *C. nodosa* high-shade systems were comparable with *A. moluccana* in both the soil depths
 - Low-country
 — more frequent droughts /
 Climate change
 - Therefore, the effect of new shade systems on dry season soil moisture conditions is important
- New shade tree species resulted comparable effect on dry season soil moisture content to that of A. moluccana

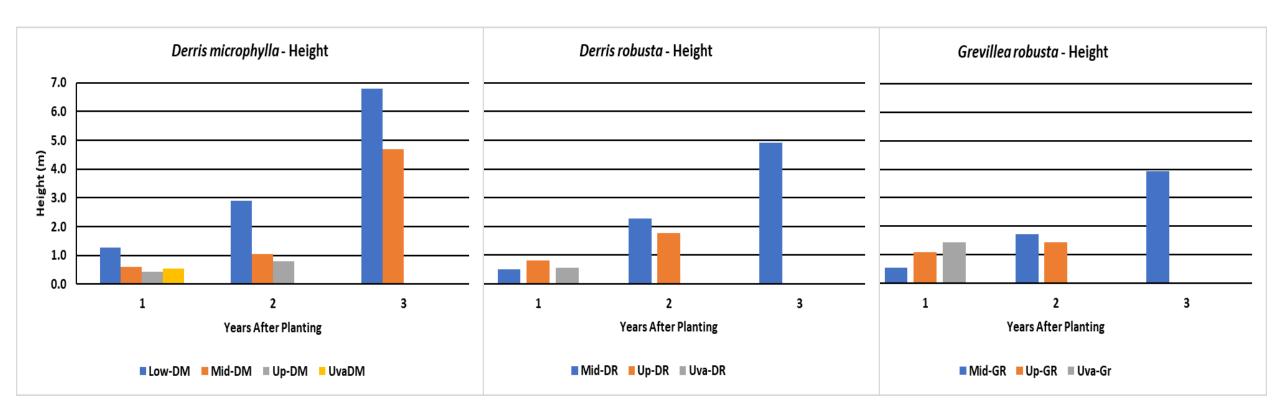
Pest and Disease

	Dead SHB (%) after 14 days
Derris	95±0.54
TRI 2025	23±0.6

- Laboratory Bio-Assay using D. microphylla and TRI 2025 stems
 - Introduced SHB (10) to the stem parts (CRD with 6 reps)
- 14 days after introduction of beetles
 - 95% of SHBs dead in *D. microphylla* stems
 - No brood development observed
 - Dead as introduced adults themselves
- D. microphylla is a NON-HOST plant for SHB / No other P&D observed

Root system of Derris microphylla


Anchorage / Nutrient Cycling


- Plant height 10 m
- Tap root depth 2 m (1/5th the height)

- Canopy diameter 5 m
- Roots has grown even beyond drip line

Experiments in other Elevations

Other field observations

- Cassia nodosa
 - Heavily attacked by porcupines
 - Collar region canker and heavy casualties
 - Spikey stem with maturity
 - Dry weather leaf fall (deciduous) during February

- Derris microphylla
 - No P&D observed in the field
 - *D. microphylla* plant spaces gave comparable results
 - Lowest density can be used
 - Manageable plant size even after 20-25 years

(in a separate observation site)

Conclusions

- Derris microphylla grows smaller than Albizia moluccana that it is easier for shade management
- Derris microphylla has longer replacement duration than Albizia moluccana
- Derris microphylla (40x40 ft) can be recommended as an alternative high shade tree species for Albizia moluccana in low-grown tea plantations
- Cassia nodosa is not a suitable alternative candidate for Albizia moluccana as a high shade tree in low-grown tea plantations
 - Thick and fast growth of secondary branches, dry period leaf fall and heavy casualties

Acknowledgement

Management and the field staff of Houpe estate, Kahawatta.

References

- Anonymous 2003 Shade in tea. TRI Advisory Circular (No. SI-2), 4. Tea Research Institute of Sri Lanka.
- Beer J 1987 Advantages, disadvantages and desirable characteristics of shade trees for coffee, cacao and tea. Agroforestry Systems, 5(1), 3–13. Available online: https://doi.org/10.1007/BF00046410. Last cited 15.10.2020.
- Bremner J M 1982 Total nitrogen In: Methods of Soil Analysis: Part 2 Agronomy. C A Black and R H Miller (Eds.). Maidson, Wisconsin, USA. 100-103.
- Carr M K V and Stephens W 1992 Climate, weather and the yield of tea. In: Willson KC, Clifford MN (Eds), Tea: Cultivation to Consumption. 87-135.
- Dharmakeerthi R S, Indraratne S P and Kumaragamage D 2007 Manual of Soil Sampling and Analysis. Special publication no. 10. Soil Sci. Society of Sri Lanka. 1-124.
- Duncan J M A, Saikia S D, Gupta N and Biggs E M 2016 Observing climate impacts on tea yield in Assam, India. Applied Geography, 77, 64–71. Available online: https://doi.org/10.1016/j.apgeog.2016.10.004. last cited 20.10.2020.
- Dutta S K 1961 Efficient use of shade trees. Two and a Bud 8 (4), 16-24.

References

- Gee G W, Sandanam S, Kulasegaram S and Anandacoomaraswamy A 1982 Effect of shade on leaf water diffusion resistance in clonal tea (Camellia sinensis). Tea Quart. (51), 12-20.
- Liyanage L R M C, Jayakody A N and Gunaratne G P 2014 Ammonia Volatilization from Frequently Applied Fertilizers for the Low-Country Tea Growing Soils of Sri Lanka. Tropical Agricultural Research Vol. (26/1), 48–61.
- Mohotti A J and Lawlor D W 2002 Diurnal variation of photosynthesis and photoinhibition in tea: effects of irradiance and nitrogen supply during growth in the field. J. Exp. Bot. (53/3), 13-322.
- Nelson D W and Sommers L E 1996 Total carbon, organic carbon and organic matter In: D L Sparks (Ed.). Methods of Soil Analysis. Part III, 3rd Edition. American Society of Agronomy, Madison WI. 961-1010.
- Rahman F 1988 Physiology of the tea bush. Two Bud 35:1-14.

References

- Rajkumar R, Marimuthu S and Muraleedharan N 2002 photosynthetic efficiency of sun and shade grown tea plants. Sri Lanka J. Tea Sci. 67(1/2). Tea Research Institute of Sri Lanka. 67-75.
- Shyamalie H W, Pilapitiya H M C G, Karunarathna B M N C and Wellala N N K 2016 Worker shortage in tea plantations: How big the "Crisis" is? TRI update, Tea Research Institute of Sri Lanka. 15 (1/2), 6-8.
- Sivapalan P 1993 Shade and green manure trees in tea-A holistic appraisal. Sri Lanka Journal of Tea Science. (62), 41–46.
- Wang Y, Gao L, Shan Y, Liu Y, Tian Y and Xia T 2012 Influence of shade on flavonoid biosynthesis in tea (Camellia sinensis (L.) O. Kuntze). Scientia Horticulturae. 141. 7–16. Available online: https://sci-hub. st/ https://www.sciencedirect.com/science/article/pii/ S03 0442 3812001793. Last cited 28.10.2020.
- Wijeratne M A, Anandacoomaraswamy A, Amarathunga M K S L D, Ratnasiri J, Basnayake B R S B and Kalra N 2007 Assessment of impact of climate change on productivity of tea (Camellia sinensis L.) plantations in Sri Lanka. J. Natn. Sci. Foundation Sri Lanka 35(2), 119-126.
- Wijeratne M A, Gamage A G and De Costa W A J M 2016 Role of shade trees in tea: Low country perspective. Tea Bulletin, 25 (1/2): 14-20.

Thank you!

