Can Salicylic Acid **Application Induce Drought Tolerance** in Immature Tea Plants?

Project Team

M.M.N. Damayanthi, Plant Physiology Division, Tea Research Institute of Sri Lanka, Talawakelle

T.L. Wijeratne, Plant Physiology Division, Tea Research Institute of Sri Lanka, Talawakelle J.W. Damunupola, Department of Botany, Faculty of Science, University of Peradeniya, Sri Lanka

N.M. Vithanage, Plant Physiology Division, Tea Research Institute of Sri Lanka, Talawakelle

Overview

- Drought impact on Tea
- Drought Mitigation Strategies
- Salicylic acid (SA)
- Exogenous SA Application
- Objective
- Experiments
- Materials and Methods
- Results and Discussion
- Benefits of SA Application
- Conclusions
- Future Directions

Drought Impacts on Tea

Rain-fed plantation crop

Climate change impacts on tea

Frequent and prolonged dry spells,

1992, 2016 and 2024

Reduction of crop

- Reduction of crop (i.e. 1983- 4%, 1992- 26%, 2016-11%)
- 15 40% in different cultivation areas in different parts of the world

Casualties

New clearings during 1991
 were wiped out entirely due to
 the drought occurred in 1992

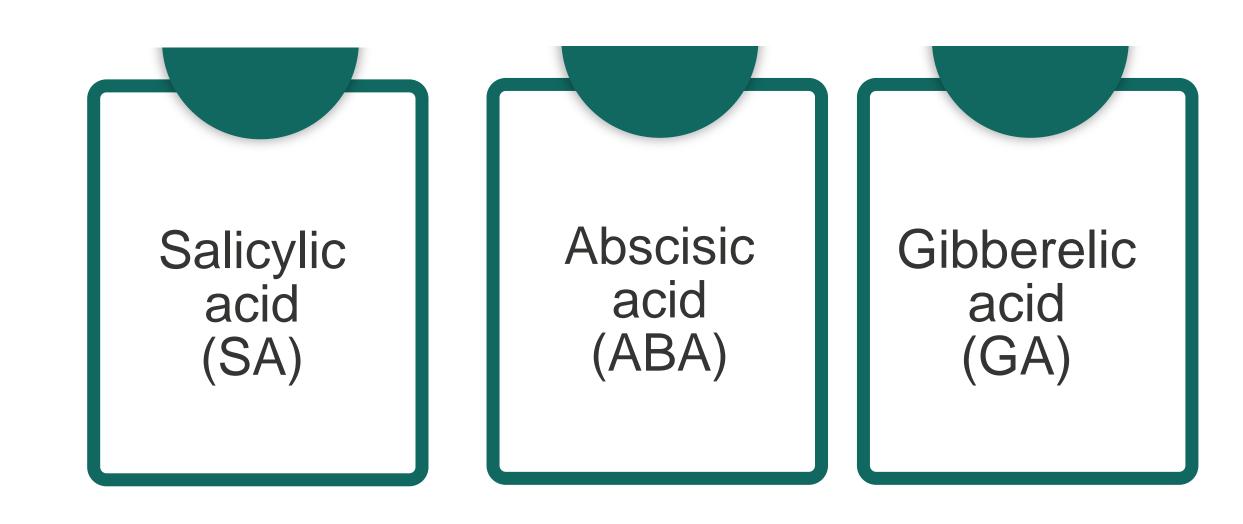
Necessary to take timely provisions to minimize long-term and short-term drought effects to sustain yield

Drought Mitigation Strategies

Planting of drought tolerant cultivars

Following proper agronomic practices (mulching etc.)

Irrigation



Spraying of 2% K+

Foliar application of SOP or MOP prior to anticipated drought

Exogenous application of plant hormones

Salicylic Acid (SA)

- SA is an endogenous growth regulator
- Produced by the plant naturally
- Phenolic acids

It plays an important role in regulating,

- Plant growth
- Development
- Regulation of physiological processes in plants such as: growth, photosynthesis, and metabolic processes

Improves plant resistance to biotic and abiotic stresses

Exogenous SA Application

Plant	Parameters considered
Gardenia (Gardenia jasminoides)	Gas exchange parameters, chlorophyll, relative water content, proline accumulation and activity of antioxidant enzymes
Rubber (Hevea brasiliensis)	Stomatal conductance and biomass accumulation
Red bayberry (Myric rubra)	Gas exchange parameters, chlorophyll content and relative water content
Tomato (Lycopersicon esculentum)	Gas exchange parameters, membrane stability, water potential and activity of antioxidant enzymes

Objective

To evaluate the potential of exogenous Salicylic acid (SA), application on improving survival and productivity under short-term drought conditions in immature tea

Experiments

Experiment 1

Effect of exogenous application of salicylic acid (SA) on alleviation of drought stress of immature tea plants (Under glasshouse condition)

Experiment 2

Plant hormonal regulation on physiological changes in field grown immature tea plants during drought stress

1

Application of SA on alleviation of drought stress of immature tea plants Glasshouse trial (At TRI)

One year potted plants (TRI 2025, TRI 2023)

RCBD

2 blocks and 24 replicate plants per cultivar per

treatment

- Exposed to drying cycle No Spray (NS)
- 0 (Water-Spray = WS)
- 50, 100, 150, 200 mg L⁻¹
- Well Watered (WW)

2

Plant hormonal regulation on physiological changes in field grown immature plants (At Field No 8NC, Fairfield Division, Bearwell Estate, Talawakelle)

Three-year-old plants

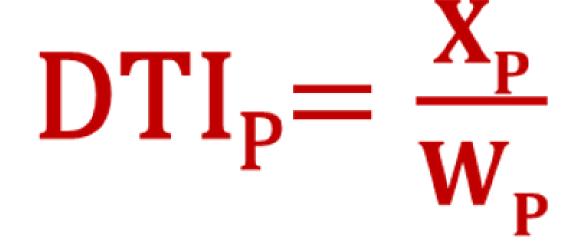
RCBD - 3 Blocks

At moderate moisture stress (25% moisture reduction)

Foliar sprayed

- SA in selected concentrations
- Water-spray (WS)
- No-spray (NS) treatments

Data were collected at 7days, 14 days and 21 days after applying the treatments (DAS) from randomly selected plants



Parameter	Effect	
Leaf relative water content	Optimum physiological functioning, growth and survival	
Gas exchange parameters	Plant growth and production	
Osmolytes (Leaf total soluble sugar content and leaf proline content)	Compatible solutes accumulate /plant self-protective mechanisms	
Starch content	Contributes to plant growth and survival	
Pigments (Chlorophyll a, b and carotenoid)	Can induce the tolerance of plants to drought	
Antioxidant activity	Plants can scavenge ROS by producing antioxidants	
The dark respiration	Contributes to drought tolerance by reducing the consumption of soluble sugars	
Recovery of plants	Glasshouse trial: At 21 DAS, plants were re-watered, visually assessed after another 7 days Field trial: after rain	
Soil moisture		

Data Analysis

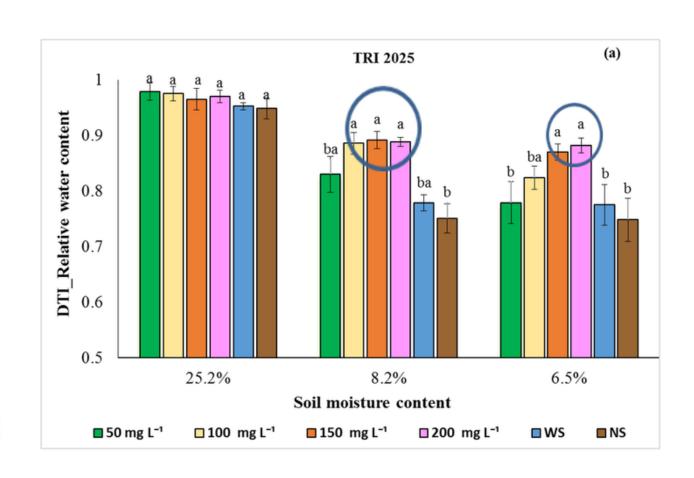
Drought Tolerance Index for each treatment calculated using the corresponding values of well-watered plants taken as the reference

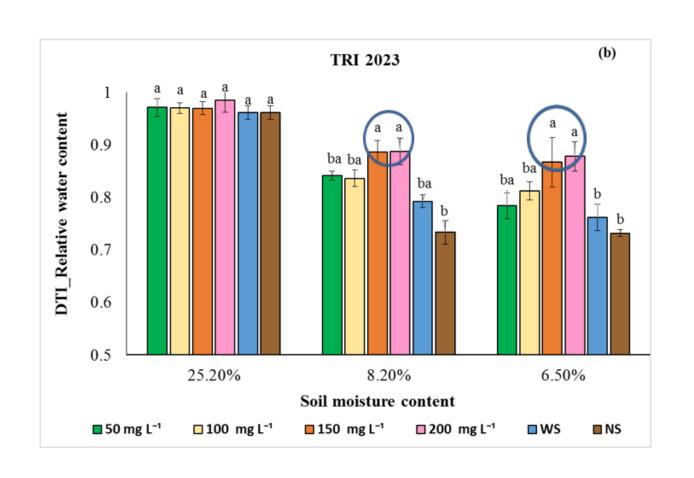
DTI_P = Drought Tolerance Index for Photosynthetic rate

X_P = Photosynthetic rate of specific treatment at a particular measurement interval

W_P = Corresponding Photosynthetic rate of WW condition at the same measurement interval

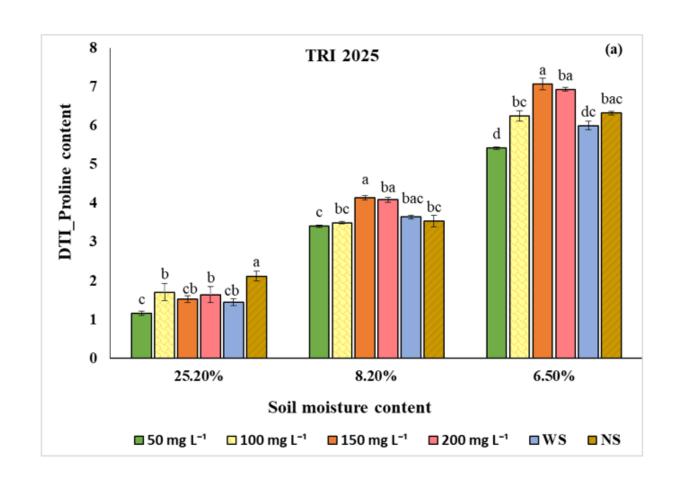
(Cheruiyot et al., 2007; Al-Azab et al., 2022)

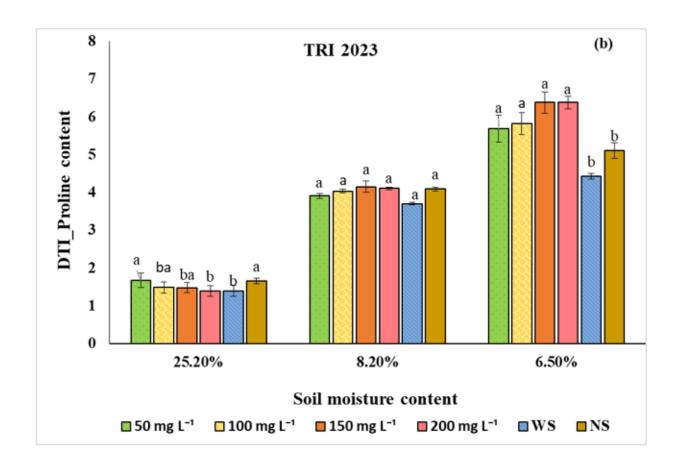




Glasshouse Experiment - RWC

- Relative water content (RWC) Amount of water in a leaf at the time of sampling relative to the maximal water a leaf can hold.
- RWC Measure of internal plant water status and reflects metabolic activity of tissues
- Exogenous SA application helps the plants for better maintenance of DTI for RWC


Field Experiment - RWC


Relative water content (%)

Treatment	Soil moisture content (%)			
	27.6	25.0	16.6	
SA	85.33	83.68	83.45	
WS	84.62	81.99	81.55	
NS	84.37	81.80	81.43	

- RWC declined with the progression of drought
- SA treated plants showed significantly the highest RWC
- Maintenance of higher RWC indication of more tolerance to drought
- It influences the capability of the plant to recover from stress condition and yield stability

Glasshouse Experiment - Osmolytes Accumulation

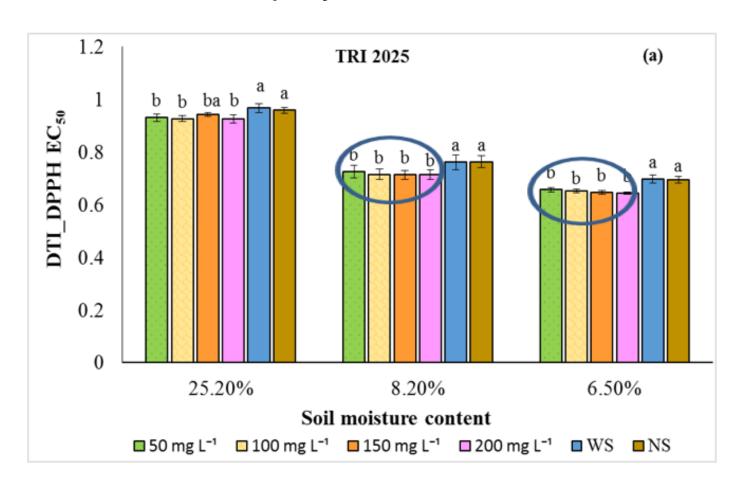
- The accumulation of compatible solutes Play an important role in the plant selfprotective mechanisms
- Osmotic adjustment Important adaptive response to abiotic stress, enhancing plant function and survival during periods of drought

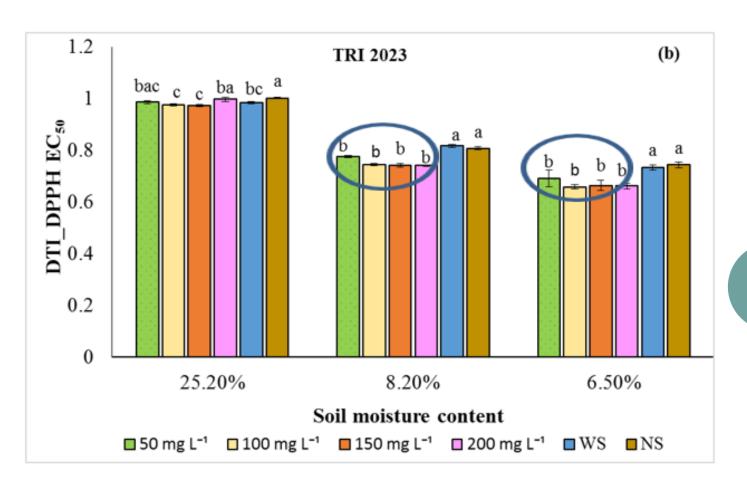
Field Experiment - Osmolytes Accumulation

Treatment	Proline content (µg g ⁻¹) Soil moisture content		
	27.6%	25.0%	16.6%
SA	48.01	91.07	123.48
WS	45.50	81.64	108.44
NS	50.27	90.87	116.37

Osmotic adjustment

Cell osmotic potential


Maintain cell turgor and physiological processes under short-term drought stress condition

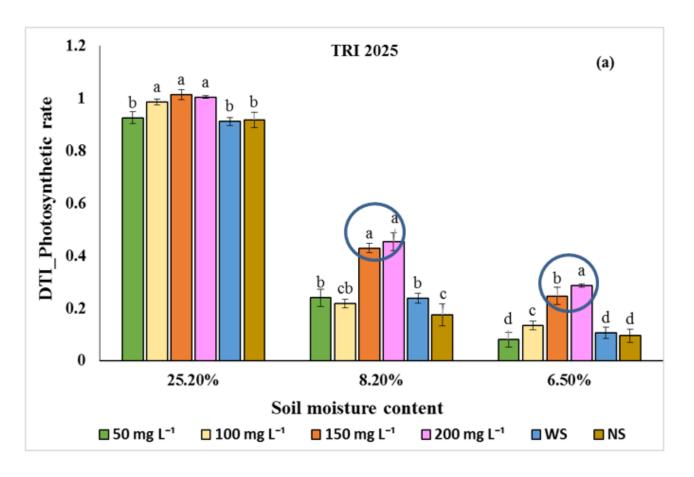


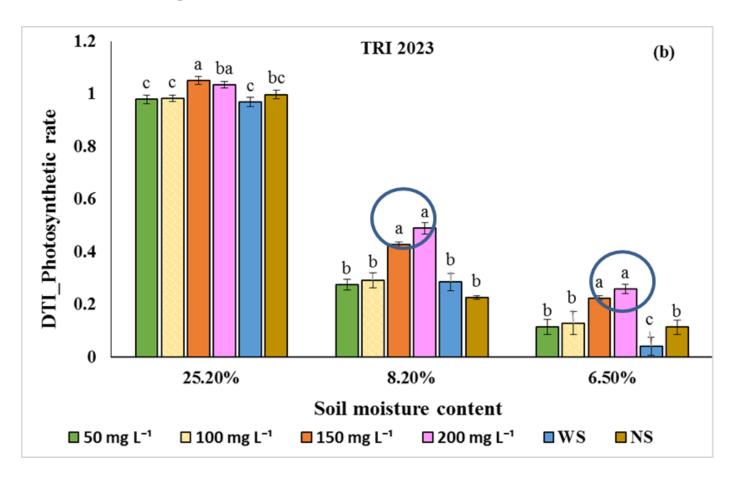
 SA induced osmolytes accumulation partly increases the osmotic adjustment which helps the plants for better survival under drought condition.

Glasshouse Experiment - Antioxidant Activity

- Plant cells produce oxygen radicals and their derivatives are called reactive oxygen species (ROS)
- Abiotic stresses induce the overproduction of highly reactive and toxic ROS
- ROS can cause serious damage to DNA, RNA, protein, lipids, pigments and eventually cell death
- Plants scavenge ROS by producing antioxidants
- Antioxidants play a critical role in the alleviation of abiotic stresses

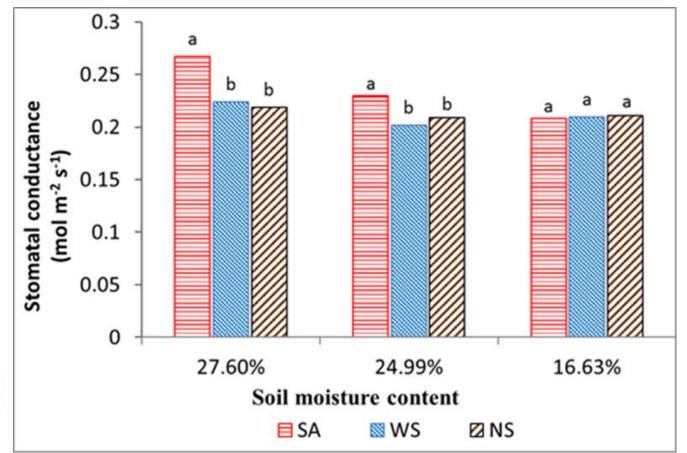
Field Experiment - Antioxidant Activity

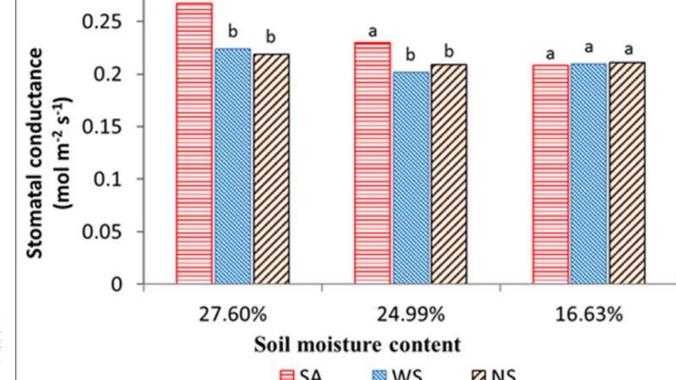

	DPPH EC50 value		FRAP value			
Treatment	Soil moisture content		Soil moisture content			
	27.6%	25.0%	16.6%	27.6%	25.0%	16.6%
SA	203.10	161.81	108.00	141.88	163.48	184.19
WS	220.42	169.08	123.26	137.47	159.96	180.57
NS	221.90	169.67	114.90	137.52	159.80	181.31


- SA treated plants exhibited the highest antioxidant activity (i.e the lowest DPPH EC₅₀ value)
- SA treated plants showed significantly the highest FRAP value
- An ability to maintain the antioxidative mechanisms during drought has usually been associated with a rapid recovery of plants

Glasshouse Experiment - Gas Exchange Parameters

- Photosynthesis is the driving force of plant productivity
- Drought stress inhibited the photosynthesis of plant leaves through stomatal closure, imbalanced water, and decreased enzymatic activity in the Calvin cycle
- The ability to maintain an optimum photosynthetic rate under environmental stresses is fundamental to the maintenance of plant growth and production

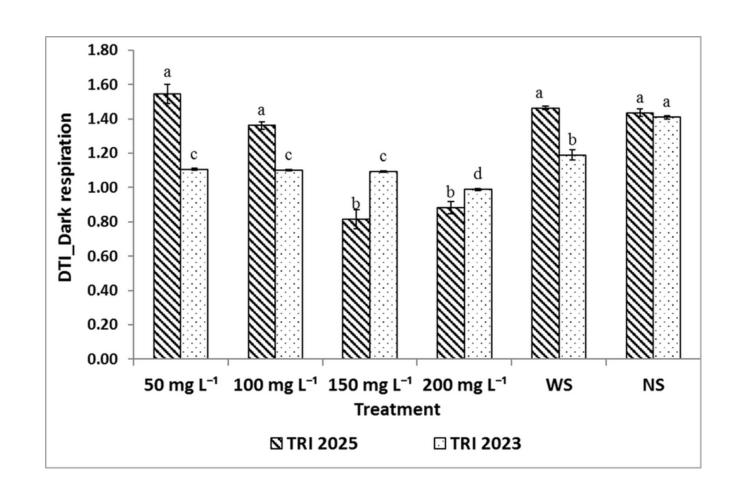


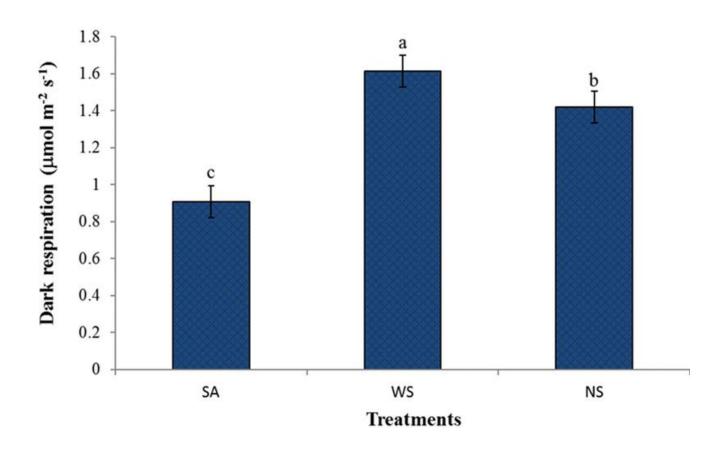




Field Experiment - Gas Exchange Parameters

Treatment	Photosynth	etic rate (μmol	m ⁻² s ⁻¹)	
	Soil moisture content (%)			
	27.6	25	16.6	
SA	9.94	8.23	7.53	
ws	8.50	7.36	6.87	
NS	7.94	7.93	7.27	





Dark Respiration

Dark respiration rates generally increase during drought

The maintenance of significantly a lower dark respiration was observed in SA sprayed plants

the consumption of soluble sugars- which plays a crucial role in osmotic adjustment and protection against photodamage

Glasshouse Experiment - Recovery Percentage

Tractionata	Recovery percentage (%)			
Treatments	TRI 2025	TRI 2023		
50 mg L ⁻¹	34.29	28.57		
100 mg L ⁻¹	69.05	64.29		
150 mg L ⁻¹	80.00	79.17		
200 mg L ⁻¹	81.67	80.36		
WS	28.57	12.50		
NS	14.29	7.14		
WW	100.00	100.00		

 Well-watered plants in both cultivars remained unaffected throughout the experiment

 SA resulted higher recovery percentages

Recovery

NS

100 mg L⁻¹

WS

150 mg L⁻¹

50 mg L⁻¹



200 mg L⁻¹

Summary

Exogenous SA application

- Helps the plants for better maintenance of RWC
- Maintenance of comparatively higher gas exchange parameters
- Increased the accumulation of osmolytes

- Improved the Starch content
- Improved the total chlorophyll content
- Improved antioxidant activity
- Decreased dark respiration
- Better recovery after drought upon re-watering

Publications

□ Volume 10 (2019)

Keywords

Issue 12

Issue 11

Journal of Soil Sciences and Agricultural Engineering

Journal Info Guide for Authors **Submit Manuscript Contact Us** Browse Share 🌊 | How to cite 📑 | 🖂 | 🖶 | Home > Articles List > Article Information JSSAE Salicylic Acid is an Effective Eco-Friendly Technique Article 4, Volume 10, Issue 12, December 2019, Page 741-746 ▶ PDF (529.54 K) Document Type: Original Article DOI: 10.21608/JSSAE.2019.79572 View on SCiNiTO Author M. Omar III Soils department, Faculty of Agriculture, Mansoura University, Egypt Abstract Articles in Press The rate of salicylic acid (SA) degradation in the experimented peat soil was conducted to determine the degradation by five Current Issue concentrations of ¹⁴C radioactive salicylic acid (i.e. 0.001, 0.01, 0.1, 1.0 and 10 µM) at different time periods. Results showed that the rate of salicylic acid degradation increased as the concentration raised from 0.0001 to 10 mM. Thereafter, the rate of **Journal Archive** SA degradation increased slightly to reach about 28.7% after one week (168 h). In addition, a pot experiment was carried out at Bilgas city, Dakhalia Governorate during summer season of 2017 to study the effect of salicylic acid spraying on its **Volume 15 (2024)** translocation in lettuce (Lactuca sativa L.) tissues, as well as its effect on fresh yield and chemical analysis. Salicylic acid was **University** Volume 14 (2023) sprayed at concentrations of 0, 0.0001, 0.001, 0.01, 0.1, 1.0 and 10 mM at pH values of 4 and 7 after one week from **Volume 13 (2022)** cultivation once a week, and stopped two weeks before harvesting. Further, spraying with salicylic acid at concentration of 0.01 mM was the best concentration on enhancing chlorophyll content, fresh weight yield, phosphorus and potassium **Description** Volume 12 (2021) concentrations, in addition, alleviation of free nitrate accumulation in lettuce tissues. Concerning the effect of pH value, it was noticed that pH value 7 was better than pH value 4 on enhancing chlorophyll content, fresh weight yield, phosphorus and **Volume 11 (2020)** potassium concentrations, while pH value 4 was better than pH 7 on alleviation of free nitrate accumulation in plant tissues.

Salicylic acid degradation; Chemical composition; Lettuce plants

Plant Pathol. J. 36(1): 1-10 (2020) https://doi.org/10.5423/PPJ.RW.12.2019.0295 pISSN 1598-2254 eISSN 2093-9280

Review

Open Access

The Plant Pathology Journal

©The Korean Society of Plant Pathology

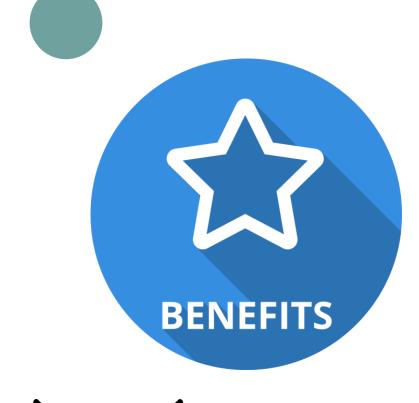
Salicylic Acid as a Safe Plant Protector and Growth Regulator

Young Mo Koo, A Yeong Heo, and Hyong Woo Choi*

Department of Plant Medicals, Andong National University, Andong 36729, Korea

(Receive for December 16, 2019; Revised on January 27, 2020; Accepted on January 27, 2020)

Since salicylic acid (SA) was discovered as an elicitor of tobacco plants inducing the resistance against *Tobacco mosaic virus* (TMV) in 1979, increasing reports suggest that SA indeed is a key plant hormone regulating plant immunity. In addition, recent studies indicate that SA can regulate many different responses, such as toler-


and temporally as endogenous signals at a very low dose to regulate various physiological functions. Unlike the animal systems producing hormones in specialized organs and transferring them to another parts via blood stream, each living plant cell can produce hormones on their own (Went and Thimann, 1937). To successfully survive under the

Review

The Plant Pathology Journal 2020;36(1):1-10. Published online: February 01, 2020

DOI: https://doi.org/10.5423/PPJ.RW.12.2019.0295

Benefits of SA Applications

- Onset of drought application
- Effective with low concentration
- Low cost
- Green application
- Alternative foliar application for drought mitigation

Conclusions

- Foliar application of 150 and 200 mg L⁻¹ SA were the best treatments for reducing the drought impacts on immature tea.
- Considering the environmental impact and cost effectiveness, application of 150 mg L⁻¹ SA may be considerably effective in reducing the drought impact on young tea.
- Field study also confirmed that the exogenous application of 150 mg L⁻¹ SA under drought was helpful in enhancing drought tolerance in field grown immature tea plants.

Future Directions

- Mature tea
- Commercial product Availability low SL

Locally available plant-based materials which contain a higher amount of

natural SA - White willow, Eucalyptus

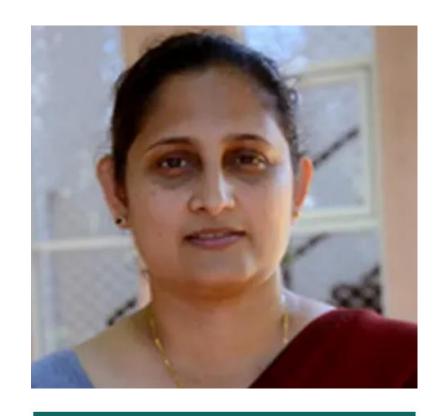
Development of a product for drought mitigation

Acknowledgement

I wish to express my special thanks and gratitude to:

- Manager and staff of the Bearwell Estate
- Manager and staff of the St Coombs Estate

Our Team



Dr. M.M.N. Damayanthi
TRISL

Dr. T.L. Wijeratne

TRISL

Prof. J.W. Damunupola

UoP

Ms. N.M. Vithanage

TRISL

Tea Research Institute of Sri Lanka

THANK YOU!

For Listening to this presentation

Dr Nalika Damanyanthi

- +94 52 2258201
- dnalika@yahoo.com
- www.tri.lk
- Plant Physiology Division
 Tea Research Institute of Sri Lanka, Talawakelle

